Performance Testing Of Medical Ultrasound Equipment

James A. Zagzebski

Depts. of Medical Physics, Radiology, and Human Oncology

University of Wisconsin, Madison, WI

Should we do routine performance testing in ultrasound?

- Some say "It is not beneficial."
- Others believe there is not sufficient manpower, especially in physics and bme.
- Phantoms are perceived to be expensive and inadequate.

Routine performance testing ...

- No established performance standards.
 - Geometry, no problem; image quality is!
- Lack of correlation between performance parameters and clinical performance.
- Imaging is simple; specifying performance is complex.

Contents

- Review characteristics of equipment
- Discuss factors related to physicists measurements of imaging performance
- Recommend basic QA
- Discuss role of medical physicists

A-MODE AND B-MODE

ELECTRONICALLY SCANNED ARRAYS

Real-time imaging

JAZ tongue 30 frames/s

SIGNAL PROCESSING

Harmonic Processing

Gallbladder Polyp

Fundamental

Coded Excitation

GE 548c Standard Transmit GE 548c Coded Excitation

PULSE DURATION AND FREQUENCY

Low frequency pulse

High frequency pulse

 Higher frequencies give shorter duration pulses and better axial resolution

GE Logiq 700

Horizontal spacing: 2 mm, 1 mm, 0.5 mm, 0.25 mm

Vertical Spacing: 2 mm, 1 mm, 0.5 mm, 0.25 mm

SELECTABLE TRANSMIT
FOCAL DISTANCE delay time

Multiple Transmit Focal Zones

DYNAMIC RECEIVE MODE FOCUSING

variable delays

DYNAMIC APERTURE

 Number of elements used increases as echos arrive from progressively deeper structures.

FOCAL ZONE CHARACTERISTICS

F = focal distance

D = aperture (transducer) size

 λ = wavelength

(smaller for higher frequencies)

Point targets in tm material

GE C548 transducer

7 MHZ

SLICE THICKNESS EFFECTS

Important Performance Features

- Geometric accuracy
 - (Not at levels considered previously when static scanners were used)
- Resolution
- Uniformity
- Penetration and sensitivity
- Low contrast detection

Common US phantoms

Gel Phantom Material Properties

Property	Value	Degree of Control
Density	10 ³ kg/m ³	Good
SOS	1,540 m/s	Very Good
Attenuation	0.5 to 0.7 dB/cm-MHz	Good
Scatter	Liver like	Good
B/A	Water-like	Fair

Water-based Gel Phantoms

- Gel materials cannot be machined.
- Even little bubbles cause big problems.
- Care is needed to avoid desiccation.

Alternative Materials

- Polyurethane rubber
 - stable
- SOS = 1455 m/s
 - (Too low)
- Attenuation changes too rapidly with freq.
- QA tests only?
 - (Goodsitt et al, 1998, Med Physics)

Vertical Distance Accuracy

Horizontal Distance Accuracy

Prostate Implant phantom

Dots indicate templates for insertion points.

Targets should align with template.

(Courtesy of CIRS)

Extended Fields

3-D "Egg-Phantom"

Axial Resolution Targets

Cautions Regarding Axial Resolution

- Discrete target separation
 - Scanner performance may fall between target spacing
- Window material causes reverberations
 - Occasionally see double images of a target
- Only limited use of quantitation
 - Axial response length (computer or manually)

Reverberations from Scanning Surface

Lateral Resolution

"Standard Phantom" Attempt (ACR)

P Carson

E Boote

T Johnson

A Siebert

J Zagzebski

E Madsen

RMI 408A

Spherical Mass

Low Contrast Detection

Routine QA Program

- Equipment inspection
- Penetration into a phantom
- Gray scale photography (workstation monitor)
- Image uniformity
- Distance measurements (where needed)

RMI 403

Inspection

- Transducers free of cracks, delaminations
- Cables in good shape
- Transducers cleaned after each use
- Viewing monitors clean
- Air filters
- Wheels, locks

Maximum Depth of Visualization

Photography (gray bar)

Photography (SMPTE)

Image Uniformity (dead elements)

Role of The Medical Physicist

- Be knowledgeable in functionality of ultrasound equipment.
- Be aware of issues related to acoustic output levels.
- Help establish QA programs.
- Work beyond routine QA measurements.

Mechanical and Thermal Indices (MI and TI)

- 1992 (US) Acoustic
 Output Display Std
- Removed application specific intensity limits
- Contrast agents (MI)
- Research mode (NIH)

