Fundamental Principles of CT Performance Evaluation AAPM Summer School June 24-28, 2001

Tom Payne PhD

Abbott Northwestern Hospital

Minneapolis, MN

Basic Operation of a CT Scanner

- The "Generation" Race
 - 1st Generation single beam, translate-rotate
 - 2nd Generation multiple beam, translate-rotate
 - 3rd Generation fan beam, rotate
 - 4th Generation fan beam, fixed ring

- X-ray Technique
 - -kVp
 - mAs
 - slice thickness
 - filtration
 - collimation

- Computerized image formation
 - Filtered back-projection
 - Convolution filter (Shepp & Logan, Std Head, H9)
 - Noise versus spatial resolution (Sharp vs smooth)
 - Matrix size
 - 80x80, 160x160, 256x256, 512x512
 - Pixel (51.2cm FOV = 1mm pixels)
 - Voxel (pixel with Z dimension, 1x1x3mm slice)

- Scan motion (3rd Generation)
 - Axial (contiguous versus spaced)
 - Helical (spiral)
 - Pitch = Table feed per rotation / slice thickness
 - Pitch = d / NT (table feed / number sections x thickness)

- Scan Object Effects
 - Size of object (e.g. large body vs pediatric)
 - cupping/capping artifacts beam hardening
 - Composition (e.g. skull, air, metal pins)
 - edge effects, streaks

- Detectors
 - Xenon ionization
 - Solid state
- Factors absorption, signal, stability, decay rate

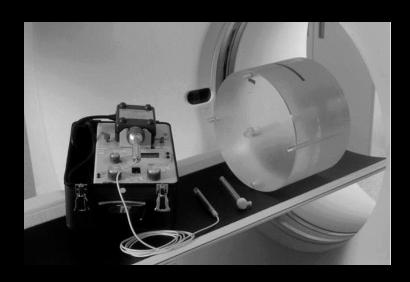
CT Number Scale

$$-CT\# = K \bullet [(u_x - u_w)/u_w]$$

- where K is a scaling factor (orig. 500 now 1000)
- currently called "Hounsfield Units" (HU)
- Air = -1000, Water = 0, Plexiglas = 120-130

- Slice thickness
 - Slice Sensitivity Profile (SSP)
- Method of Measurement
 - Thin ramp (FWHM)
 - Inclined plane of wires

- Low Contrast Detectability
 - phantom with low contrast objects (~5HU)
- High Contrast Resolution
 - phantom with small hole patterns AAPM
 - bar patterns with different line-pairs/cm (2-5lp/cm)


- Field Uniformity
 - CT Number variation in a uniform phantom
 - Scan of a water phantom (16-50cm diameter)
 - ROI of center versus edges (+/- 3-5 HU's)
 - Artifact evaluation

- CT Radiation Dose
 - Multiple Scan Average Dose (MSAD)
 - Computed Tomography Dose Index (CTDI)
 - CTDI₁₄₀ CTDI₁₀₀
 - CTDI_w

- $CTDI = f \cdot C \cdot D \cdot L / nT$
 - where:
 - f = exposure to dose (0.78 rad/R acrylic, 0.94 tissue)
 - C = chamber factor (R/reading)
 - D = reading
 - L = active length of chamber
 - n = number of simultaneous sections
 - T = slice thickness

CT Dose Measurement

CTDI measure

